Бесплатная консультация юриста:
8 (800) 500-27-29 (доб. 553)
СПб и Лен. область:Санкт-Петербург и область:
+7 (812) 426-14-07 (доб. 318)
Москва и МО:
+7 (499) 653-60-72 (доб. 296)
Получить консультацию

Масло в воздушном коллекторе приора

Симптомы подсоса воздуха в коллекторе: проверка и определение

Любое несанкционированное проникновение лишнего воздуха в систему питания ведёт к обеднению рабочей смеси. Нарушается оптимальный баланс топлива и воздуха, в результате чего двигатель колотит, холостые обороты могут пропасть вовсе, при этом на оборотах выше 2-3 тысяч мотор может работать вполне сносно.

Кроме этого электронный блок управления двигателем может показывать ряд ошибок — Р0171, обеднённая смесь, может появляться ошибка Р300, говорящая о пропусках в воспламенения в камере сгорания. В зависимости от модели двигателя, может возникать ряд других ошибок.

Тем не менее основными симптомами подсоса воздуха во впускном коллекторе считаются:

  • неустойчивые холостые обороты, двигатель трясёт, невозможно отрегулировать холостые;
  • двигатель может глохнуть в переходных режимах работы;
  • провалы при ускорении;
  • высокий расход топлива;
  • сложный запуск при любой температуре воздуха;
  • падение мощности, особенно на оборотах ниже 2-3 тысяч;
  • двигатель троит, не работает в определённых режимах один или несколько цилиндров.

Откуда может подсасывать воздух?

Достаточно одного из этих симптомов, чтобы говорить о подсосе воздуха во впускном тракте. Точно установить место подсоса воздуха бывает довольно непросто, поскольку место крепления и уплотнения впускного коллектора к головке блока цилиндров — далеко не единственный путь для засасывания лишнего кислорода.

В зависимости от модели двигателя, мест подсоса может быть несколько:

  1. Повреждение или прогар прокладки впускного коллектора, это одно из самых распространённых мест неплотности.
  2. Уплотнители форсунок в инжекторных моторах.
  3. Люфт и неплотности в осях дроссельных заслонок карбюраторных двигателей.
  4. Вакуумный усилитель тормозов.
  5. Патрубки и шланги, которые фиксируются на коллекторе.
  6. Прокладки дроссельных узлов в инжекторных моторах.
  7. Клапаны адсорбера, заглушки на коллекторе, неплотности в датчиках.
  8. Регуляторы холостого хода сомнительного качества могут быть негерметичными.
  9. Втулки.

Как видим, неприятностей можно ждать не только от прокладки коллектора или самого коллектора, вместе с тем есть ряд мер, которые помогут найти место пробоя и быстро устранить неисправность.

Роль фильтра в автомобиле

Мотору Лада Калина требуется на каждые 100 км пути около 12-14 кубометров воздуха. Во впускном коллекторе происходит его смешивание с топливом, распыляемым форсунками инжектора. Затем смесь попадает в камеры цилиндров, где происходит ее сгорание. Оптимальное долевое соотношение воздуха с топливом обеспечивает «выход мотора» на заявленные производителем характеристики. Не является секретом факт, что вместе с воздухом во впускной ресивер попадает большой объем пыли, взвешенной грязи и прочих соединений. Роль фильтра заключается в обеспечении качественной очистки всасываемого воздуха, ведь он является своего рода преградой на пути указанных негативных частиц.

Если бы воздушный фильтр отсутствовал, то вся взвешенная грязь неминуемо попала бы внутрь цилиндров мотора, постепенно оседая на его стенках и накапливаясь в масляной системе. Это привело бы к появлению задиров на стенках гильз и вкладышах, что повлекло бы капитальный ремонт.

Постепенное засорение фильтрующего элемента приводит к ухудшению его пропускной способности и, как следствие, к воздушному «голоданию» двигателя LADA Kalina. Это чревато образованием нагара на деталях клапанного узла и элементах цилиндропоршневой группы, ведь такое сгорание будет характеризоваться присутствием обогащенной топливом смеси сверх допустимого предела. Это неизбежно приводит к повышению топливного расхода и снижению уровня мощности агрегата. Также выхлопные газы наделяются повышенной токсичностью.

Регулировка фар Лада Гранта

Дабы не способствовать развитию указанных факторов, в обязательном порядке нужна своевременная замена воздушного фильтра. Производитель («ВАЗ») рекомендует склоняться к такой процедуре через каждые 30 тыс. км пройденного пути, когда эксплуатация авто предполагается преимущественно в городских условиях. Если LADA Kalina большую часть своего пробега «проводит» в условиях повышенной запыленности проселочных путей, то этот интервал следует сокращать до 15 тыс. км. Данные пределы могут незначительно изменяться, ведь владельцу тоже нужно обращать внимание на специфику использования своего «коня». Для этого требуется чаще заглядывать в корпус воздушного фильтра и менять этот элемент при наличии признаков засорения.

Некоторые владельцы прибегают к рациональному решению – замене фильтрующего компонента вместе со сменой моторного масла. В зависимости от индивидуальной ситуации этот «трюк» не обязательно проделывать с каждой заменой масла, можно и через раз.

Основная причина

Масло в свечные колодцы попадает через негерметичность стыка элементов, отделяющих колодец от внутреннего пространства ГБЦ. Встречается несколько вариантов конструкции головки блока.

  • Вставка свечного колодца вкручивается в ГБЦ. Между верхней частью вставки и клапанной крышкой устанавливается сальник. Чаще всего масло в колодцы попадает при естественном старении уплотнителей, которые переживают многочисленные перепады температур, воздействие газов и моторного масла. Реже утечка происходит через резьбовое соединение нижней части вставки. Такая конструкция используется на двигателях 3S-FE, 4S-FE, на примере которых мы и рассмотрим собственноручное устранение проблемы.
  • Вставка свечного колодца вставляется в ГБЦ, в верхней и нижней части соединение герметизируется сальниками. Именно таково устройства ГБЦ на двигателях ВАЗ 2112 1.5 л с 16 клапанами. Уплотнительные кольца со временем ужимаются и теряют свою эластичность, что и становится причиной проникновения масла.
  • Трубка свечного колодца отсутствует как таковая. Стенки полости для вкручивания свечи зажигания являются составными частями ГБЦ. Именно по такому типу устроен двигатель ВАЗ 21126, устанавливающийся на Лада Приора, Калина, Гранта. Между нижней частью головки блока, постелью распредвалов и крышкой клапанов отсутствуют прокладки. Герметичность достигается нанесением на привалочные плоскости герметика. Из-за многочисленных перепадов температур, а также деформации при затягивании болтов крепления ГБЦ, постели распределительных валов и крышки, невозможно добиться идеального прилегания деталей. Это и становится причиной проникновения масла в свечные колодцы.

Система вентиляции картера

Повышенное давление картерных газов – одна из основных причин ускоренного прорыва масла через уплотнения свечных отверстий. Принцип работы вентиляции картера замкнутого типа предполагает подвод смеси паров масла, бензина и отработавших газов обратно во впускной коллектор.

За дозирование порции газов отвечает клапан PCV. Если по каким-либо причинам клапан не будет справляться со своей задачей, внутри ГБЦ образуется избыточное давление. Причина неисправности может быть как в самом клапане, так и в изношенной цилиндропоршневой группе. При изношенных компрессионных кольцах, увеличенном зазоре между поршнями и цилиндрами системе вентиляции картера труднее справляться со своей задачей.

В случае обильного запотеваня вокруг прокладки клапанной крышки, поддона, масла в воздушном фильтре, свечных колодцах, настоятельно рекомендуем проверить вентиляцию картера. При повышенном давлении отработавших газов замена прокладок с нанесением анаэробного герметика даст лишь краткосрочный эффект.

Симптомы и последствия

Для определения неисправности достаточно вытащить из колодцев наконечники ВВП/модули зажигания и выкрутить свечи. Масляная пленка на элементах и будет главным признаком негерметичности. Если вовремя не устранить причину попадания масла, двигатель начнет троить, потеряет мощностью во всех либо определенных режимах работы, что может вылиться еще и в большой расход топлива. Вероятнее всего, по причине пропусков зажигания в цилиндрах на приборной панели загорится Check Engine.

Приводит к таким последствиям негативное воздействие моторного масла на уплотнитель наконечника высоковольтных проводов, модулей катушек зажигания. Масляная среда создает благоприятные условия для пробоя искры, вследствие чего нарушается сгорание ТПВС в цилиндре.

Характеристики движка 21128

Приоритетной задачей производителя Супер-Авто было увеличить мощность взятого за основу ДВС 21124, не гнущего клапаны, поэтому в двигателе произошли перемены:

  • схема двигателя осталась прежней – схема ГРМ DOНС с 2 распредвалами верхнего расположения;
  • добавился объем до 1,8 л – камеры сгорания увеличены, цилиндры имеют размер 82,5 мм, до 84 мм добавлен ход поршня;
  • обеспечена безопасность клапанов – глубокие лунки защищают их от загиба при встрече с поршнями в момент обрыва ременной передачи газораспределительного механизма;
  • степень сжатия 10,5 единиц;
  • прошивка контроллера Январь 5.1, сечение дроссельного патрубка 51 мм.

В результате мануал содержал описание параметров мотора – мощность в районе 95 – 105 л. с. и крутящий момент на 3200 оборотах около 160 – 162 Нм. Поршни проектировались совместными усилиями инженеров АВИТИ и Супер-Авто, так как подобного размера в линейке АвтоВАЗ не существовало в принципе. Шатуны также созданы под этот ДВС, длина 129 мм, крепление 19 мм пальцем, посадка на нестандартную шатунную шейку 41,5 мм.

Соответственно, коленвала с шатунными шейками такого размера и радиусом кривошипа под увеличенный ход поршня также не существовало. Его разрабатывали отдельно, что и повлияло на увеличение себестоимости силового привода.

При заявленном ресурсе 150 000 км пробега мотор производителя не выдерживал 100 000 км, расходовал очень много масла –  до 1 литра на 1000 км пробега. Стандарт экологичности снизился до Евро-2. «Длинный» ход поршня приводит к увеличению нагрузок на боковые поверхности цилиндров, интенсивный износ колец/поршней. Отсюда высокий расход масла движков, система перегревается.

Через год руководство Супер-Авто сняло ДВС маркировки 21128-26 с производства, заменив его следующей версией с обозначением 21128-27:

  • мотор не гнет клапана, поэтому установлен обычный ремень ГРМ с ресурсом 50 – 90 тысяч км;
  • цилиндрам возвращен размер 82 мм, поршни от Federal Mogul облегченного типа;
  • использованы шатуны компании Mecaprom;
  • создана новая версия прошивки контроллеров;
  • подъем клапанов увеличен до 8,3 мм (на 0,7 мм больше, чем у оригинала);
  • экостандарт увеличился до Евро-4.

В результате, изготовителем обеспечена мощность 123 л. с и крутящий момент 165 Нм на 4000 оборотах.

Поскольку было разработано две версии мотора 21128, технические характеристики менялись со временем:

Изготовитель ЗАО Супер-Авто
Марка ДВС 21128
Годы производства 2013 (2014) – …
Объем 1597 см3 (1,6 л)
Мощность 78 кВт (106 л. с.)/90,5 кВт(123 л. с.)
Крутящий момент 148 Нм (на 5800 об/мин)/165 Нм (на 4000 оборотах)
Вес 116 кг
Степень сжатия 10,5
Питание инжектор
Тип мотора рядный
Впрыск распределенный с электронным управлением
Зажигание катушка для каждой свечи
Число цилиндров 4
Местонахождение первого цилиндра ТВЕ
Число клапанов на каждом цилиндре 4
Материал ГБЦ сплав алюминиевый
Впускной коллектор объединен с ресивером, полимерный
Выпускной коллектор катализатор
Распредвал 2 шт., схема DOНС
Материал блока цилиндров чугун
Диаметр цилиндра 82,5 мм, затем 82 мм
Поршни облегченные, производитель Federal Mogul
Коленвал оригинальный
Ход поршня 84 мм
Горючее АИ-95
Нормативы экологии Евро-2/4
Расход топлива трасса – 5,9 л/100 км

смешанный цикл 7,5 л/100 км

город – 9,8 л/100 км

Расход масла 0,7 – 1 л/1000 км, затем 0,3 л/1000 км
Какое масло лить в двигатель по вязкости 5W-30 и 10W-40
Какое масло лучше для двигателя по производителю Liqui Moly, ЛукОйл, Mannol,Mobil
Масло для 21128 по составу синтетика, полусинтетика
Объем масла моторного 3,5 л
Температура рабочая 95°
Ресурс мотора заявленный 150000 км

реальный 100000 км

Регулировка клапанов гидрокомпенсаторы
Система охлаждения принудительная, антифриз
Количество ОЖ 7,8 л
Помпа с металлической крыльчаткой
Свечи на 21128 BCPR6ES от NGK или отечественные АУ17ДВРМ
Зазор между электродами свечи 1,1 мм
Ремень ГРМ Gates, ширина 22 мм, ресурс 200000 км пробега
Порядок работы цилиндров 1-3-4-2
Воздушный фильтр Nitto, Knecht, Fram, WIX, Hengst
Масляный фильтр номер по каталогу 90915-10001

замена 90915-10003, с обратным клапаном

Маховик увеличенный размер демпфера
Болты крепления маховика М10х1,25 мм, длина 26 мм, проточка 11 мм
Маслосъемные колпачки код 90913-02090 впускные светлые

код 90913-02088 выпускные темные

Компрессия от 14 бар, разница в соседних цилиндрах максимум 1 бар
Обороты ХХ 800 – 850 мин-1
Усилие затяжки резьбовых соединений свеча – 31 – 39 Нм

маховик – 62 – 87 Нм

болт сцепления – 19 – 30 Нм

крышка подшипника – 68 – 84 Нм (коренной) и 43 – 53 (шатунный)

головка цилиндров – три стадии 20 Нм, 69 – 85 Нм + 90° + 90°

Даже после доработки силового привода, капитальный ремонт возможен уже через 150000 км пробега. Это связано с оставшимся «длинным» ходом поршня, повышенным нагрузкам на стенки цилиндров, интенсивной выработкой деталей ШПГ.